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Abstract—Grouping of earthquakes into distinct clusters is

applied to improve mechanism identification and pattern recogni-

tion for active seismicity in a region. One of the important issues

concerning earthquake data clustering is determining the optimum

number of clusters (ONC) at the early stages of algorithms. In this

paper a robust method based on K-nearest neighbor search (KNNS)

is presented to achieve three goals: improving output accuracy,

improving output stability, and adding the ability to weight the

features used in ONC determination. By introducing a new for-

mula, the proposed method utilizes the error calculated for

clustered data based on the similarity between the members in each

cluster. An outlier attenuation algorithm is also used to improve the

performance of the method. Both the Krzanowski–Lai Index (KLI)

and the silhouette coefficient (SC), as two conventional methods,

were used to compare the results and evaluate the performance.

Experiments on synthetic data sets verified the effectiveness of the

method, with considerable differences found. The clustering of a

real earthquake catalogue related to the seismogenic province of

Zagros in Persia using our proposed methodology suggests using

13-cluster analysis for clustering based on the spatiotemporal fea-

tures with the same weights, and seven-cluster analysis for a case

where priority is given only to the spatial parameters of the epi-

centers. Under the same circumstances, the KLI and SC methods

suggest three and 18 clusters, respectively. The results of the

experiments on synthetic data sets indicate that the proposed

method is quantitatively more stable and more accurate than the

other two methods.

Keywords: KNN search, earthquake data clustering, number

of clusters, outlier data, Zagros.

1. Introduction

Data mining generally refers to the extraction of

knowledge from available information, in which the

purpose is to discover the hidden patterns in a large

database. Given recent advances in seismology data

analysis, and thus the production of large data sets,

the availability of powerful methods able to analyze a

large amount of data is essential (Frawley et al.

1991). Clustering, as a method for data mining, is a

technique that involves the grouping of observations

into a certain number of clusters (Berkhin 2002). In

seismology, although clustering is addressed exten-

sively in seismicity analysis and aftershock

identification (Zaliapin et al. 2008), there are other

diverse uses including event matching of earthquake

catalogues with geological evidence (Hall et al. 2018;

Ansari et al. 2009), earthquake risk analysis (Mignan

et al. 2016; Nazmfar 2019) and earthquake relocation

studies (Trugman and Shearer 2017). A brief over-

view of previous studies is provided in Table 1.

Clustering methods can be categorized into two

main classes: partitioning and hierarchical clustering

(Dubes and Jain 1980). Partitioning methods divide

an n-element set of data into k groups of elements so

that k B n, and each group represents a cluster.

Hierarchical methods divide the data set into clusters

and sub-clusters in a tree form. In this group of

methods, according to their interaction, clustering is

progressively improved and therefore the results of

clustering are qualified as more acceptable, while the

execution time is shorter than with partitioning

methods (Dubes and Jain 1980).

Two widely used algorithms amongst the parti-

tioning methods are K-means, as a hard-clustering

method (Hartigan and Wong 1979), and C-means

clustering (Ren et al. 2016), which is a fuzzy clus-

tering method. Both methods are based on

minimizing the distance objective function given as:

J ¼
Xn

i¼1

Xn

j¼1

kxi
j � cik

2
; ð1Þ
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In fuzzy clustering, unlike classical clustering

(also called crisp or hard clustering), a data set is

partitioned so that each data point belongs to one or

more clusters with a membership degree which is not

necessarily zero or 1, and can be a number between

these values (Bezdek 1974; Hajian and Styles 2018).

One of the most challenging issues in clustering is the

problem of determining the optimum number of

clusters (ONC). This is usually solved using statisti-

cal approaches (Sugar and James 2003), and many

methods have been published in this context. Charrad

et al. prepared an R package providing 30 indices for

cluster analysis, called NbClust (Charrad et al. 2014).

Unfortunately, the currently proposed methods are

neither specialized for seismological data purposes

(especially the case of severely overlapped clusters)

nor adequately accurate and stable. This issue is

strongly evaluated in this work by performing

analysis on different synthetic data sets. As the main

objective, in order to overcome the abovementioned

drawbacks, a robust method of grouping analysis is

presented here based on the basic philosophy of data

clustering by proposing a new formula for calculating

clustering error. In addition, in order to offer the

option to prioritize the features used for error calcu-

lation, a built-in option is also provided for weighting

the parameters during the grouping analysis

procedure.

2. Materials and Method

To date, various methods have been introduced

for cluster analysis and for determining the reason-

able number of clusters (i.e. the number for which the

output of clustering best fits with the physics of the

system). However, none of these methods is specifi-

cally dedicated to analysis of earthquake catalogue

data. Earthquake data usually have a very wide spa-

tiotemporal distribution, and the ability to properly

determine the ONC is precluded by two properties

inherent in these data sets. The first obstacle is the

existence of outliers as, in fact, isolated earthquakes

in the catalogue, and the second is the high proba-

bility of clusters overlapping in feature space.

Among the different methods for ONC determi-

nation, here the KLI and the SC were selected to

compare their proficiency with the proposed method.

In the next two sections, a brief explanation of each

method is provided.

2.1. Krzanowski–Lai Index

Introduced by Krzanowski and Lai (1988), the

KLI is one of the best performers among the cluster

analysis methods (Mufti et al. 2005). Recently, Hall

et al. (2018) used the method for earthquake epicenter

clustering related to the Afro-Arabian Rift System.

The KLI is defined as Eq. 2 (Petrosyan and

Proutiere 2016):

KLk ¼
Diff k

Diff kþ1

����

����; ð2Þ

where

Table 1

Overview of selected studies

Author(s) Overview of the research

Zaliapin et al.

(2008)

Using spatiotemporal parameters plus

magnitude of the events, aftershocks were

clustered separately from mainshocks in

synthetic and real earthquake catalogues

Hall et al. (2018) In order to perform computational analysis of

the earthquake patterns, K-means

clustering was used based on KLI cluster

analysis. Correlation of the cluster

boundaries with structural segmentation

was used as an evaluation method

Ansari et al. (2009) Seismotectonic models of Iran were

compared with the output of Iran’s

earthquake clustered data. It was

concluded that clustered data based on

epicentral parameters were in good

agreement with the seismotectonic models

Mignan et al.

(2016)

From the methodological point of view, the

combined effects of earthquake (regime)

clustering and damage-dependent fragility

on seismic risk were investigated

Nazmfar (2019) Vulnerability of urban buildings against

different earthquake intensities was

evaluated by cluster analysis

Trugman and

Shearer (2017)

Using cross-correlation data, station and

event information, and velocity model, and

based on hierarchical clustering, a new

(relative) earthquake relocation method

was proposed

H. R. Samadi et al. Pure Appl. Geophys.



Diff k ¼ ðk � 1Þ
2
pWk�1 � k

2
pWk: ð3Þ

Here, k is the number of clusters which maximizes

Eq. 2 and is considered the ONC. W is the result of

summation, applied on squares of the distance of each

object (within the cluster) from the centroid of the

cluster, and finally, p denotes the number of features

in the data set. The k which provides a higher KLk

value is considered as the ONC. Practically, the KLI

calculation procedure is performed by averaging for a

set of iterations for each k.

2.2. Silhouette Coefficient

The silhouette method is based on measuring the

quality of clustering results by calculating the sim-

ilarity of an object to its own cluster objects. The SC

is calculated as (Savaş et al. 2019):

Sk ¼
1

n

Xn

j¼1

bj � aj

maxfaj; bjg
; ð4Þ

where aj is the averaged distance (i.e. sum of dis-

tances, divided by the number of objects in the cluster

minus 1) between the current object and all other

within-cluster objects, and bj is the minimum average

distance from the jth point to points in the nearest

cluster. Hence, in the best case that belongs to the

ONC, the difference bj - aj is closer to max {aj, bj},

and the k which maximizes Eq. 4 represents the

ONC.

2.3. Cluster Analysis Based on K-Nearest Neighbor

Search

The method presented in this work is based

simply on the main philosophy of clustering; that is,

in well-clustered data, the vectors or objects with

maximum similarities are labeled with the same

cluster; otherwise the situation can be considered as

an error (Edson 1932). Based on the above, to

calculate the ONC in a set of vectors, the following

steps are worth considering in the presented method:

Step 1: From an initial to a final number of

clusters (NC), determined by user, the clustering

algorithm (any) is performed on the set of data.

Step 2: For any round of the above and for every

object within the data, using KNNS introduced by

Altman (1992), the most K similar objects are

determined and grouped.

Step 3: Sum of error (SE) for each NC is

calculated through Eq. 5:

SENC ¼
XN

i¼1

XK

j¼1

1

NC
Criij; ð5Þ

where N is the total number of objects in the data, and

the term Criij, the error criterion, is zero everywhere

except where it could be 1 by satisfying the following

two conditions: the two compared objects (one from

looping over all data and the other from the group of

KNNS) cannot belong to the same cluster, and the

distance between the two points must not be greater

than the distance between the point in the KNNS

group and the centroid of the labeled cluster for this

point.

Step 4: NC with minimum SE is indicative of the

ONC.

To reduce the effect of random centroid selection

by clustering algorithms, the aforementioned steps

are iterated (empirically, a number between 5 and 20

is sufficient to stabilize the output). Therefore, the

process of error calculation can be continued by

averaging over all SENC in all iterations:

Mean SENCð Þ ¼
Xitr

i¼1

ðSENCÞi

itr
; ð6Þ

where itr is the number of all iterations. K (in Step 2)

consists of a fixed value (e.g. constant percentage of

the total data size that is empirically determined) and

an incremental variable part, increasing based on the

NC increment. This is mainly for solution conver-

gence in the case where the data are noisy or the

clusters overlap.

One of the most challenging topics in clustering is

the problem of outlier presence (Gan and Ng 2017).

Earthquake data clustering definitely suffers from this

problem (Shi and Pun Cheng 2019). Hence, in the

very first step of the algorithm, by a method based on

Hampel filtering (Liu et al. 2004; Yao et al. 2019) in

the subdivided zones resulting from regular gridding

of the data, the amount of the outlier data is reduced.

However, identification of the outliers is just to

determine the correct number of clusters and does not

necessarily mean that the outliers have to be deleted
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from the data set. Nevertheless, this procedure is

crucial and must be supervised by an expert to

prevent any major changes in the structure of the

data. A Hampel identifier, which is regarded as one of

the most efficient methods for outlier detection

(Pearson 2002), is originally based on the rolling

median (RM) and median absolute deviation (MAD)

of the data, which are both studied locally in a

symmetric window around each element of the data

set. The method marks a data point as an outlier if the

following criteria are satisfied for element x.

x � RM XNð Þ� tf:MAD XNð Þ; ð7Þ

where

MAD XNð Þ ¼ gd:median x1 � RM XNð Þj j; . . .;f
xN � RM XNð Þj jg:

ð8Þ

Generally, the thresholding factor (tf) is set equal

to 3, and the unbiased estimation of the Gaussian

distribution (GD) is equal to 1.4826. Here, N stands

for the window length and for preserving symmetric

criteria, and is an odd number (Yao et al. 2019).

Applying an outlier removal procedure may cause

some original cluster objects to be deleted; therefore,

this step requires expert supervision for checking that

clusters critically do not vanish.

In addition to increasing the accuracy of the

algorithm, one of the reasons for proposing a new

algorithm in the present work was to have the ability

to apply different weights for all features in the

process of determining ONC. In some circumstances,

including earthquake risk analysis (Mignan et al.

2016) or earthquake migration studies (Chen et al.

2012), it is preferred to use the set of features with

different weights in the algorithm in order to give

priority to certain features or dimensions (in the

special case of clustering earthquake data, this set of

features is usually provided in the earthquake cata-

logues). In doing so, in the method proposed here, the

sum of the error is calculated separately for specific

features by finding the group of similar points by

KNNS, using only the mentioned features. Finally,

the error is calculated by weighting and averaging in

each direction and adding them. The flowchart of the

K-nearest neighbors search cluster analysis

(KNNCA) is depicted in Fig. 1.

3. Experiments

The performance of the proposed method was

assessed by performing the algorithm in three sets of

synthetic data, one of which was contaminated with

5% of additive outlier events. In the first data set, five

randomly generated clusters were created without any

additive outliers. This four-dimensional data were

created based on five centroids and some randomly

generated points with a variance equal to 1. The

minimum and maximum of each feature (dimension)

was bounded between 0 and 30, and as shown in

Fig. 2a–c, the clusters are well separated from each

other. With no preprocessing steps (e.g. data nor-

malizing), and in accordance with the details

provided in Table 2, the methods were applied over

the range of NC = 2, 3, …, 14. The result of 100

iterations of the methods are illustrated in Fig. 2.

Start

Clustering Data with 
Different NC

Preprocessing, Outlier 
Cancellation

Calculating Error for 
Each Feature and NC

Weighing Error for this 
Iteration 

All Iterations 
are Done?

Averaging Errors and 
Determining Optimum NC

End

No

Yes

Figure 1
Flowchart of KNNCA for determination of the ONC in a

multidimensional data set

H. R. Samadi et al. Pure Appl. Geophys.



Histograms of the outputs, i.e. the repetition fre-

quency of the ONC resulting from each iteration, are

also shown for stability comparison. The exact ONC

for the KNNCA and the SC versus 77% correctness

for the KLI output is indicative of the superiority of

the first two methods in this experiment.

A set of 4D points, as much as 5% of the total

number of objects in the previous data set, with

variance equal to 30 were produced and added to the

data as outliers (Fig. 3a–c). Using the same setup as

in the prior experiment, the methods were applied on

the data and the results are plotted in Fig. 3. In

contrast to the case with no additive noise, where the

SC was unsuccessful in providing the correct answer

and the KLI lagged (about 34% in terms of perfor-

mance), the proposed method preserves the

performance due entirely to the outlier removal

option.

Figure 2
a–c Plot of a five-cluster synthetic data set from different view angles; 100 iterations of ONC calculations by d KLI, e SC, and f KNNCA. g–

i Histograms of the outputs for the mentioned methods, respectively. Here, in the case of no additive outliers, the performance of silhouette

and KNNCA are the same, whereas the KLI is slightly lagging

Table 2

Specifications of the methods for the first experiment

Method Specifications

KLI No. of internal iterations = 100, distance = ’’Euclidian’’,

clustering algorithm = ’’K-means’’

SC Distance = ’’Euclidian’’, clustering algorithm = ’’K-

means’’

KNNCA Outlier cancellation = 10%, distance = ’’Euclidian’’,

clustering algorithm = ’’K-means’’
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The experiments are continued with a synthetic

10-cluster data set that is also bounded to the same

range as the previous data set (Fig. 4a–c). This is

mostly because of decreasing cluster distances and

assessing the ability to distinguish overlapped clus-

ters. Also, the variance in the generated data points is

doubled for the same reason. The output of the KLI is

comparatively useless, as the pick of the histogram

does not match the true NC.

To evaluate the effect of outlier data on ONC

determination, an incremental schema was chosen for

the number of additive outliers in each iteration. In

doing so, a synthetic four-cluster data set was gen-

erated so that the clusters were well separated from

each other in order to reduce the effect of overlapping

clusters in this experiment. The outlier data, from 1 to

30% of the size of the original data set, were added

and ONC determination methods were performed in

each iteration. The results of this experiment are

illustrated in Fig. 5, indicating the robustness of the

KNNCA based on only two wrong predictions (out of

30). Also, it is concluded that the SC is not feasible

Figure 3
a–c The data in Fig. 2a, with 5% additive outliers plotted from different view angles. One hundred iterations of ONC calculations by d KLI,

e SC, f KNNCA, and g–i histograms calculated for the methods’ output, respectively. Obviously the proposed method has preserved the

performance (with reference to previous experiment) completely while KL and SC has declined their performance 34 and 100% respectively.

Comparing the histograms is also indicative of a notable difference between the stability of the methods

H. R. Samadi et al. Pure Appl. Geophys.



for the cases where the input data are contaminated

with outliers.

4. Clustering Earthquake Catalogue of Zagros

After investigating the performance of the meth-

ods using synthetic data sets, we used information

from a real earthquake catalogue related to the events

recorded in the seismogenic province of Zagros in

Iran. The Zagros thrust folded belt is located between

the Arabian plate and the central Iranian plate. This

belt is over 1600 km in length and 200–300 km in

width. This region is known as an active seismic

zone, and more than half of Iran’s instrumented

earthquakes happen along this belt (Tatar et al. 2002).

Some of the most important faults located in this

region are the Zagros main reverse fault, high Zagros

fault, Zagros fore-deep fault and Kazeroon fault. The

study of the area shows that a series of steep reverse

faults are the source of the seismic events in this

seismogenic zone (Talebian and Jackson 2004). This

earthquake catalogue contains 554 events with ML

C 4.0 reported by the International Institute of

Earthquake Engineering and Seismology between

2006 and 2019. The plot of the catalogue using epi-

central spatial parameters is shown in Fig. 6. The first

experiment on this data set was an all-even-weights

Figure 4
a–c A synthetic 10-cluster data set with some overlapped clusters from different view angles. One hundred iterations of ONC calculations by

d KLI, e SC and f KNNCA, and g–i histograms calculated for the output of the methods, respectively. The KLI has 2%, SC has 78% and

KNNCA has 100% correct output predictions. Unlike previous tests, in the situation with clean data (no additive outlier), the SC recovers the

performance even with overlapped clusters
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ONC determination. Here, 15% of the events were

eliminated as outliers. This was done based on visual

assessment, i.e. by checking that the data structure

did not have major changes after outlier elimination.

For the KNNS grouping and error calculation, 2% of

the data were used, and the range of NC was con-

sidered to be between 3 and 20 clusters. The results of

this test are illustrated in Fig. 7, and based on the

histogram interpretation, although it is concluded that

almost all methods performed steadily in ONC

determination, there is a considerable difference

between the KNNCA outputs and those of the other

two methods. While the KLI and the SC indicate an

ONC of three, the proposed method suggests 13

clusters. This experiment shows that outliers severely

affect the KLI and the SC responses.

As the last experiment, giving priority to spatial

parameters of the epicenters and setting the related

weights equal to 0.425 (for longitude and latitude),

0.15 for depth, and zero for the time of the events, the

proposed algorithm was applied on the data with no

other changes in setup. For the KLI and the SC cal-

culations, only latitude and longitude information

was used, as there is no built-in option for weighting

the input features. The results of the tests over a range

of 5–30 clusters are depicted in Fig. 8, suggesting an

ONC of 18 clusters for the KLI and SC, and seven for

the KNNCA. The remarkable point about the results

of this experiment is that the ONC determined by the

first two methods was higher than the case of clus-

tering using four features (in the previous test),

exactly contrary to the case of the proposed method.

5. Conclusion

In this paper, we proposed a method for deter-

mining the optimum number of clusters for

multidimensional data sets such as earthquake data.

The developed method is equipped with built-in tools

for outlier elimination and parameter weighting

which can be used in the clustering procedure.

Improving the accuracy of the algorithm and the

ability for weighting of the features used in clustering

was the main purpose in developing this method. In

the first three experiments, all of which were per-

formed on synthetic data sets, the results were
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N
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Figure 5
The ONC calculation in a synthetic four-cluster data set with varying outlier amount, for evaluating the effect of outlier presence on the

accuracy of the methods

Figure 6
Distribution of the Zagros earthquakes reported by the International

Institute of Earthquake Engineering and Seismology from 2006 to

2019
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quantitatively monitored and were found to support

the ability of the method to perform more accurately

even in the case of overlapped clusters or when

outliers were added to the data sets. At least 21% and

as much as 56% performance improvement was

recorded for the KNNCA compared to the KLI and

the SC, which confirms the superiority of the pro-

posed method. Based on this performance, the

method was also applied on a real earthquake cata-

logue related to the Zagros seismogenic zone

containing 554 data points, all of which include

hypocenter locations and time of the events. Based on

the outputs of the methods, it is suggested that the

data be clustered into 13 and seven groups for even-

weighted features and epicentral clustering, respec-

tively. A comparison the results of the histograms

also confirms the greater stability of the KNNCA

Thus, based on the above, it is concluded that the

proposed method is more accurate and more

stable than the KLI and the SC methods.

Data Availability

The earthquake catalogue is available online at:

https://www.iiees.ac.ir/.

Figure 7
a–c K-means clustering of the Zagros earthquakes based on the spatiotemporal parameters with ONC determined by KLI, SC and KNNCA,

respectively. One hundred iterations of ONC calculations by d KLI, e SC and f KNNCA, and g–i histograms calculated for the output of the

methods, respectively
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